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A calculation of the reduced spin susceptibility x(q, w) of the paramagnetic phase of a sys-
tem of electrons described by the narrow-s-band model is presented. The treatment is based
on the two-pole approximation for electron correlation in narrow energy bands by Roth. An
approximate expression for x(g, w) in the strongly correlated limit is given. This expression
is intended to be a valid approximation for the strongly correlated limit at higher carrier den-
sities where low-density T-matrix results would be inapplicable.

I. INTRODUCTION

This paper presents a derivation of an approxi-
mate expression for the reduced generalized spin
susceptibility y(g, ) of the paramagnetic phase of
a system of interacting electrons in a narrow s band
for the situation in which the electron-electron in-
teraction is large compared with the bandwidth,
One is particularly interested in the susceptibility
for the interaction large compared with the band-
width, since it can be used to look for instabilities
of the paramagnetic state toward magnetic ordering
which is expected for a sufficiently large interac-
tion energy. The previous treatments!'? based on
the random-phase approximation are inapplicable
when the interaction is large; and, except for the
low-density limit, ® approximate methods used to
treat this system in the strongly correlated limit
are of uncertain validity, A recent calculation of
the spin susceptibility by Hubbard and Jain* is in-
tended to be a valid approximation for both the lim-
its of the electron-electron interaction small and
large compared with the bandwidth. However, their
treatment is based on the narrow-energy-band cor-
relation theory of Hubbard® which has the apparent
failure of yielding the result that the system is
never ferromagnetic for a simply shaped density
of states regardless of the size of the interaction.

In this paper we base our calculation of the spin
susceptibility on the two-pole approximation of
Roth.® Her approximation is an improved version
of the Hubbard theory which gives a ferromagnetic
state in the strongly correlated limit for a simply
shaped density of states, provided the concentra-
tion of carriers is sufficiently large. The approxi-
mation does not reduce to the correct low-density
result. The calculation of the spin susceptibility
in that limit should be based on the Kanamori ap-
proximation.® However, the instabilities of the
paramagnetic state are expected at the higher car-

8

rier concentrations where the two-pole approxima-
tion of Roth is a significant improvement” on the
Kanamori theory. Therefore, the spin susceptibil-
ity derived in this paper for the strongly correlated
limit is expected to be a valid approximate expres-
sion for studying the stability of the paramagnetic
phase. Results are also applicable to inelastic
magnetic neutron scattering.

In Sec. II the model Hamiltonian for the system
is introduced and a general equation of motion pro-
cedure is described for evaluating the linear re-
sponse of the system to a wave number and frequen-
cy-dependent external magnetic field. The pro-
cedure uses a nonequilibrium generalization of the
Roth procedure® for linearizing many-body equa-~
tions of motion. This general procedure is applied
in Sec. III to the model Hamiltonian within the two-
pole approximation. An explicit expression for the
reduced susceptibility x(g, w) is given for the strong-
ly correlated limit.

II. MODEL HAMILTONIAN AND GENERAL PROCEDURE

The Hubbard Hamiltonian® for a system of elec-
trons in a narrow s band is

Hy= 2 Tyyclocyot 51514004, 6V
ijo ic
where I is the interaction energy of two electrons
of opposite spin on the same Wannier function and
Ty=N12Z e ®®Rp_p (2

the €, being the one-electron band energies. The
R; labels the atomic sites and N is the number of
sites, and the marking of vectors is suppressed in
indices and arguments.

In the presence of a varying external magnetic
field

hi(t) - .é_hoe-i(q-R ~wt) +%hoel(q' Ri~wt) , (3)

there is a Zeeman interaction
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Hi=%guy > h(H)ong,. (9) where K., is the first-order difference between
io K,,and K2,. Furthermore, for H, of the form of

The generalized reduced susceptibility x(g, w) de-
scribes the linear response of the spins to this
field. y(g, w) is defined by*

—1gus2 ,0(n;,) =Rely(g, Whoe' TR0 ] (5)
where
(nye) =Trlp(t)n;,]. (6)

Here p(¢) is the density operator, and Eq. (5) is
understood in the limit 44— 0.

An equation-of-motion technique will be used to
study the response of a set of operators {4,(¢)} in
the Heisenberg representation. In the equation-of-
motion method one attempts to find a set of opera-
tors {4,} such that

[An,H] =ZmenAm ’ (7)

where H is the Hamiltonian of the system. The
eigenvalues of K are then excitation energies of the
system., However, for systems with interactions
one must in general make approximations. One
usually chooses some set {4,}, motivated by the
apparent important correlations in the system, and
approximates [A,, H] by an expression of the form
of Eq. (7) where the matrix K is specified by some
prescription, In our treatment we shall use a
prescription due to Roth® which determines K self-
consistently. This prescription will be discussed
later in this section.

For a system subject to a perturbation H; we have

(A4,, Ho+ H] = 22 KA (8)

and

[AnsHO] :Z:mKr?mAm(t)y (9)

where these equations are approximations as pre-
viously described. The approximate equations of
motion are then

i g{ A, =T KAL) (10)
and
i L A% = T KO, A% (). (11)

dt

The zero superscript denotes the Heisenberg oper-
ator in the absence of the perturbation. Since we
are interested only in the linear response, terms

of second order in the perturbation will be neglected.
Therefore,

i (A0 - AXD) = . K, [4,(0) = A1)

+ 2 KA, (12)

Eq. (4) with #;(¢) given by Eq. (3), we make the
ansatz

Kom=Kpy € “* + Kl e™ ", (13)

A formal solution of Eq. (10) can be easily ob-
tained in terms of the solution of the unperturbed
system. Let us define a matrix @ such that

§ Qur Kgs Q;}n': E, dpm - (14)

The E, are approximate excitation energies for the

system described by H,. Using Eqs. (11) and (12),
we find to first order in the applied field

An(t) =Z Q;nl' [e-iErtBr

5 <I§(-)e-t(2m+wn K& gmiBymalt ) ]
rm rm B

+ — + - .

m \W+E, —E, +i =w+E,—E,+in/ "

(15)

Here one has the following definitions:
By=2 QA , (16)
IZ"*’:QK‘*)Q". (17

The n(n—0") describes the external field being
adiabatically switched on at ¢=- c,

Equation (15) can be used to calculate to first
order the thermal averages

(ATA,.) =Tr[p(t)ATA,, ] =Trp, Al (t) A,(2)]

=(AT @) At , (18)
where p, is the unperturbed density operator. One
obtains

(ATAY = (AT Ao+ A% 9t 4 ALY gmiut) (19)
where the AlY) are determined by
8 =T (0" (S B
_(RE)BIBY, ) . (20
Fw+E,— Eg+1in
Here we have made the approximation
(BYB)o= 8um (B} B,)g - (21)

The neglect of the off-diagonal terms of (B}B,,), is
required in order to have the thermal averages
(ArA,) vary periodically as given by Eq. (19).

We shall see that the ansatz of Eq. (13) is dependent
on having (A}A,,) of this form. It should be noticed
that Eq. (21) would be exactly satisfied if the B,
were exact excitation operators. However, since
the B, only approximate excitation operators, the
off-diagonal elements will not, in general, be zero.
Green’s-function methods are used in Appendix A



3 GENERALIZED SPIN

to evaluate (B} B,, ).

The matrices K ) and K are functions of the
elements of A“’, In order to be specific we must
give some prescription for determining K'. We
shall adopt the procedure due to Roth® where the
matrix K in

A, H] =22 K An (22)
is taken as the solution of
E=KN, (23)

where the energy and normalization matrices are
defined as

E,m=([[4,,H],AR1L), (24)

Nym=(14,,A%1.) . (25)
Therefore, in the Roth prescription

K'=E'(N°)"' = KON*(N®) L, (26)

Here E! and N! are the first-order differences be-
tween the perturbed and unperturbed energy and
normalization matrices, respectively.

In examining whether Eq. (26) is consistent with
the ansatz of Eq. (13), one encounters a difficulty
due to the fact that E might contain averages of the
form (F] A,,) where F, is not a linear combination
of the basis operators chosen. However, we shall
assume that such averages can be approximated in
some systematic manner in terms of averages be-
longing to the basis set. In that case the most gen-
eral form for K! is clearly as given in Eq. (13) with

K =M+ 2 (o, 013 + 875, (A7) ). (27)
rs

Expression (27) illustrates the explicit dependence
on the elements of A®’ and also defines the coef-
ficients M, «, and B. Substituting Eq. (27) into
Eq. (20), one obtains an explicit equation for A%,

III. GENERALIZED SUSCEPTIBILITY IN STRONGLY
CORRELATED LIMIT

The general formalism of the previous section
will now be applied to the Hubbard model in order
to determine the susceptibility for the paramagnetic
phase in the strongly correlated limit. The treat-
ment of electron correlation is Roth’s treatment in
her two-pole approximation.® One chooses the fol-
lowing set of basis operators for this application of
the Roth procedure®:

e N2 iR

Alku“cka"N Ziciae :
= _ar-1/2 i

AZko'dko'N Zinl-aciue

The unperturbed matrices E° N°, and K° are
diagonal in % and 0. One finds for E°, N° and K°
the following 2 X2 matrices for each & and o:

) , (29

(28)

LA

<Ry .

(€p+Dn
In+ ey +n(l-n)W,

o [€+In
Ex= ((e,,+1)n
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(1 n)
Ng—(n nl (30)
B € I )
k3= ((e,,- Won  I+W,/) ° (3D
Here
n=<nic’>0 ’ (32)

since we assume a paramagnetic phase. Also,

n(l=n) Wy=— N"% Ty4{c]-gCse0(l=m15=145))0
N1 T,, et‘k-(ai-ap
i
X«nl-cnj-o>0 - nz + <CI-vciac;on-u>o

_<c}'oc}oclaci-o>o)' (33)

The zero in energy has been chosen such that Ty=0.
The reader is referred to Roth® for details and for
the evaluation of the zero-order averages.

The approximate excitation energies, E, ,
(k=1, 2), are found from Eq. (31) to be

By =% {(e +1+ W,) F [(€, +1+W,)?

—4¢€,I(1 -n) —4W,(¢, +In)]llz} s (34)

where the upper and lower signs refer to 1=1 and
2, respectively. The matrix @ defined by Eq. (14)
is in a convenient normalization given by

(Eppo-€)/I -1
Qk= .
(Epy-€p)/I =1

In the strongly correlated limit (- ) the excitation
energies become

(35)

Ek,ll [0 = €1 —n) +nW, , (36)
Byl 1w>T+6n+(1-n)W,, (37)
and @ becomes
1-(e,-W)A -n)/I -1
Qelr = . (38)

This completes the description of the unperturbed
system within the two-pole approximation for the
paramagnetic phase.

In order to evaluate K! we must determine the
matrices E and N to first order in the applied field.
The perturbation as expressed by Eq. (4) may be
rewritten as

1
Hy=z h% O(C:w,u Cro €™t +c;~q,vcko e"t9t) | (39)

where h=% gugh,. For q# 0, the E and N matrices
are clearly not diagonal in k., The general elements
of these matrices to first order are
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Eypne = (€ +In)Opr + (Ingq o +5 0h A [

(40)

Evpon = (€ + Dby + [(€4+ D0y g, o
+nz0he™ ™ )8y pr s (41)

Epp, 1 = (€4 +1) 00y + [(€psq+I) Niq,-c

+Ssq,-a+3NORET ! | Bpyor,  (42)

Egpon+ = [In+€n® +n(l —=n) W, ] Oy

+ [In, ay-0+ (€ +€pug) Nig,eoM+A% hiq

+3nohe™ 1] 8y, 0, (43)

Nip,ger =0 (44)

Nig,on+ = Nop,1p » =Nop 28 =00 +M4q,-00%sq,k »

(45)
with the following definitions:

Mg =N 204 (ChyoCro) =0 a (46)
Sqo = N1, (€ = €40o) <Ck+q, Cro) = = -q,a ,  (47)
Alpa == N2, Tyem R
X(€} o€ 10l =045 _n!ue‘a.(ﬁi-iﬂ)>
SNAY T T F R o Ry (g )
1
~(Myeg) (Myog) +(€Y0C €0 Cso0)
+<C;-ac;uclaci-a>) . (48)
The averages in qu. (46)—(48) are to be evaluated

to first order in the perturbation. Using Eq. (26),
one obtains

K110 =50he™ oy q (49)
K}%,Zk’ =0, (50)
KX o= (€pee - —2—W,)n

2k, 1k Rkt q 1 -n k +q,=0

1
+ 1____7; (qu,-a —Az,ktq)jl éktq,k' ) (51)

1
Kék 2 ( (1-7n) [Ak kiq Wk(l—zn)—'nsiq,-o‘]

+%0’h e; ‘wt) ékﬁq,k' . (52)

It should be noticed that A3 ,., as defined by Eq.
(48) involves averages which are not of the form

(AlA,) where {4, }is the set of basis operators.
Hence, Eq. (20) of the equation-of-motion method
does not determine (A%A,). In order to use Eq.
(20) one must express the averages in Eq. (48) in
terms of the basis set of averages. Unfortunately,
there does not appear to be a unique way of doing
this. For simplicity, we shall consider only the
strongly correlated limit (I- «); furthermore, we
shall neglect the K- -dependent terms in A3 ,,,. Ne-
glecting the k- -dependent terms in Af ,,, is a similar
approximation to neglecting the k- dependent terms
in W,. In the unperturbed system the k-mdependent
term in W, is responsible for the desired shift in
the center of gravity of the band, which makes the
ferromagnetlc state more likely to stabilize. The
k- ~dependent terms are small by comparison and
primarily produce band narrowing. In this approxi-
mation A} ,., becomes

A‘,’,,k“l Fo <1/ 2 (K independent)= A9
=—N'lkz'€k:*q(();/ﬂ’_,ck»_‘,> . (53)

Note that we have used the fact that in the strongly
correlated limit the terms which involve a double
occupancy of a given Wannier state vanish, provided
n<3. An analogous result for n >5 can be obtained
by making use of the electron-hole symmetry of the
problem. -

By neglecting the k-dependent terms in Af ., we
have the desired situation where all the averages
are determined by Eq. (20). Furthermore, Eq. (20)
is significantly simplified by considering the strong-
ly correlated limit. With » <%, only the band of en-
ergies corresponding to E, , is occupied. Using Eq.
(20) in the strongly correlated limit with # <5, we
obtain for A,,, ., defined by

<c’l';iq,o' Cko‘) = _UAk*q,ke* bt s (54)
the following equation:

Ak*q, k

- _n)<  thsaf (Bpag 1) = (RS2 10*F (B ) )

TW+Ey, 1 -Ek 1+EM

(55)

where, in the approximation that A} .., 1, ~A$,

n .
S Wk>N DN
-n o

h
K%:)lk*a - §+ (ek*q _1

+

1-n N_lkz; €p Dyigr > (56)

~ h n .
(Kl(:)tq,lk)* = —E + (ik - 1-n Wktq>N 1§ Ak' +q,K

+ N-IE Ekltq Akl*q,kl . (57)
B

1-n
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The reduced spin susceptibility x(g, w) as defined
by Eq. (5) may be rewritten in terms of the
Dpyq,r as

x(g, w)=[(g“5)2/h]N-IEk Bp gk 5 (58)

Eq. (55) can be used to construct a set of simulta-
neous equations for N™'J ,Ap ¢, N7'0x€4 Agvq,pr and

(1 -n)Ty(g, w)

GENERALIZED SPIN SUSCEPTIBILITY...
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N1 7€x +q Do +q,r Which can be solved for N™'3, 4, ., %
and thereby obtain the susceptibility. However, .
this set may be reduced by making use of the sum
rule

20w+ €4 g =€) By qx =0, (59)

which is derived in Appendix B. One finds

Xg, ) =%<gus>f<u (=) Dolq, 111 + Ty(g, )] - (L~ m) Dy{g, ) Told, ) (€0)

where

f(Byy) =f(Eyvg)

To(g, w)=N"123
-3

rl(q’ w)=N"12 €, f(E L )_f(E Qs )
k

Do(q, w)= -N1Y
3

W+Ey g1~ Ep1+i0 (61
W+Ep,q1— Ep+i (62)
[63 +q = (n/(l "n)) W};]f(EjJ-q,l) - [ik"' (”/(1 "”)) Whia — (0)/(1 —n))]f(Ek,l,) (63)

W+Ey q,1~ Ep 1+ ’
- (n/(l "n)) W)z]f(Ek-&a,l) - [ik - (n/(l —n)) W); +q (w/(l —n))lf(Ek ,1) (64)

€
Dy(gq, w)=-N"'2J ¢, (€420
k

and where E, , is given by Eq. (36). It should be
noted that Eq. (60) is an expression for the sus-
ceptibility of the paramagnetic phase in the strongly
correlated limit with n<%. The generalization of
the derivation to finite I is straightforward, pro-
vided one again neglects the E-dependent part of

We shall not give the very complicated ex-
pression that one obtains for finite I in our approxi-
mation.

4
Abrsg

IV. DISCUSSION

Our result for x(g, w)given in Eq. (60) is not the
result of a strict application of a strict application
of the Roth two-pole approximation to this model
Hamiltonian in the strongly correlated limit. We
have made the approximation of Eq. (53) which
neglects the E-dependent terms of A ,,,. How-
ever, as previously discussed, we do not expect
this approximation to have a significant qualitative
|

4
Ak,k+q1l-°‘=,n< 1/2,w=0

H ’
w+Ek+¢,1“Ek.1+”7

[

or quantitative effect on our results. Neverthe-
less, we shall indicate how the E-dependent terms
can be included in a manner consistent with the
two-pole approximation. The inclusion of these
terms produces a significant complication.

For w#0, it is reasonable to evaluate those
averages in Eq. (48), which do not belong to the
basis set, by direct substitution of Eq. (15), which
gives the operators in the Heisenberg representa-
tion. The matrices X' will then depend on these
averages. Consequently, they must be determined
by a generalization of Eq. (20). For w=0, it is
more convenient to make use of the fact that the
average are equilibrium averages. One can ex-
press these averages in terms of averages of the
basis set by means of a method used by Roth® for
evaluating W,. This procedure is outlined in Ap-
pendix C. In the strongly correlated limit one
finds

2
= U i B ] . :
—nq,-uzf Tos T2 T ) [(2-n)et®+D Ry _ ik J]—N’?(c},,q._,c,,'_a) [€¢.q+By (B, k+q)], (65)

where

B, (k, k+q):z‘l Twl_nlE; {(2 —-n) ei(i +q+k) ~ﬁj _nei(i_i')oﬁj] . (66)
; -
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This yields the situation where J, Ay, ., is de-
termined by an infinite set of simultaneous equa-
tions for

5—? Ak’ +qy k) §€k’ Ak’+¢,k’ )
3 ¥

and

2 By (k, E+q) Ay k!
4

for each k.

However, as noted by Roth, ® her method for
evaluating W, suffers from not being unique. One
might argue that any result that depends essentially
on the E-dependent term of Aj ,,, are unreliable.
Our approximation in this sense is of comparable
validity as a strict application of the Roth two-pole
approximation. The expression for x(g, w) of Eq.
(60) should be a valid approximation for the strongly
correlated limit at higher carrier densities than
can be described by the Kanamori treatment.® Our
expression should provide the basis for a future
numerical investigation of the effects of strong
correlations on the frequency and wave-number
dependence of the response function. In the limit
w=0, x(g,w) can be used to study instabilities to-
ward magnetic ordering. The vanishing of x"(g, 0)
indicates the instability of the paramagnetic state
against antiferromagnetic ordering of wave
vector gq.
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APPENDIX A

The averages (B‘;; B,.), are easily evaluated within
the Roth procedure by standard Green’s-function
techniques. One needs the Green’s functions
(A,, ATY)S, where the zero superscript denotes
the unperturbed Green’s functions and where the
notation is that of Zubarev.® Now in the Roth pre-
scription®

« Ar; AI»% :Ep(E "KO);; Ngs . (A1)
The thermal averages (Al A,), are obtained from
the relation :

<AiAr>o= F{ Ar;A§>>0E}
=ilim [ dEF(B)[(( A AT . i
ne0* "

-(A; AN ], (A2)

where f(E) is the Fermi function. Therefore
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(B'B,)o=2 Q% Qu 5 [E <E-K°>;m,] (A3)
rs ?

=Fgl(w - En) (QN°Q"),.,] (A4)
=f(EQ) NS, , (A5)
where
N=QNgQ'. (A6)
APPENDIX B

The sum rule expressed in Eq. (59) is easily
derived by considering the equation of motion of
the average

<c}:*¢,o ckv) ETI‘[P(t) c;*q,a Cm]

=Tr{pychsq,0 ) o)1, (B1)

where p(t) and p, are the perturbed and unperturbed
density operators, respectively. The perturbation
is assumed to be adiabatically switched on at = -,
The equation of motion is then

.d :
z;t. <C:gq,oclw> =( CL.,o[Ckm H] -[H, Cz*q,o]ckq) .
(B2)

For H=H,+H,, where H, and H, are given by
Egs. (1) and (4), respectively, it is straightfor-
ward to show that summing Eq. (B2) over k yields

.d
zzt_ E (c;*q,a chu) =E(€k_€ktq)< c;tq,ocko) .
k k
(B3)

But to first order in the perturbation (cf, 0,0 Cra)
is of the form given in Eq. (54). Therefore,

inAktq,k=E (ik—ekiq)Ak*q,k . (B4)
kR k

APPENDIX C

We consider here the case where w=0, and there-
fore the averages are equilibrium averages. In
the strongly correlated limit (I—«), the terms in
Eq. (48), which involve a double occupancy of a
given Wannier state, vanish. The remaining terms
may be rewritten as

— - \J
Ag,kwl!-m” -N 1% €k’+¢<ck’+q.-ock',-o>

+23 Toye'® PiN-125 <N'1/22 e" i +)°R,
i ¥ i

i \
X ("i+ 4,-0Ci,-0— ("i +j,-v) Ci a0

\ i
+C§+i'-aci*1.u Cio) Ck'-a> . (c1)
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Following Roth,® we define operators

1 = n-1/2 -+ R 't
Bki‘+¢’_°—N /?e *a ‘n“,,_.,c‘_a, (C2)

2 —ar=1/2 -1 +3,° R t
B;fmu:N / Z‘)e (K +q R‘"zu,-ucw’ (C3)

34 = A1/25Y e i + D Ry At t
By iq,-0=N Z‘)e F O R ey gm0 Civ g0 Clo

(C4)

The equilibrium averages Yy ( By, . Cr o) are de-
termined by

? <B:;+q,o'ch'o>

= 2‘Fw {”Zi[(w —K).l.i’, lk.u( [ckm B:i+q,o]+>

+ (w "K);i’,%.o<[dko‘9 B‘I’j&-q,u]#)]} ’ (Cs)

where the only terms in the sum over k which are
not zero are the k equal to ' and #' +¢q terms. The
quantities F,[(w = K)3is s +q,0] are easily expressed
in terms of the set of thermal averages {c,.q,oCro)
and (dy, . . Cs), Where the latter are zero in the
strongly correlated limit. Therefore, Eq. (C5)
yields expressions for J, ( BY, a0 Cr o) to first order
in the applied field which depend on certain zero-
order averages that have been evaluated by Roth®
and averages belonging to our basis set of thermal
averages. The results are substituted into Eq.
(C1) in order to produce Eq. (65) for 4; ,,, in the
strongly correlated limit when w =0.
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